Cerebellar damage impairs automaticity of a recently practiced movement.

نویسندگان

  • Catherine E Lang
  • Amy J Bastian
چکیده

It has been suggested that the cerebellum plays a critical role in learning to make movements more "automatic" (i.e., requiring less attention to the details of a movement). We hypothesized that cerebellar damage compromises learning of movement automaticity, resulting in increased attentional demands for movement control. The purpose of our study was to determine whether cerebellar damage disrupts the ability to make a practiced movement more automatic. We developed a dual task paradigm using two tasks that did not have overlapping sensory or motor requirements for execution. Our motor task required subjects to maintain an upright posture while performing a figure-8 movement using their arm. This motor task was chosen to simulate requirements of everyday movements (e.g., standing while reaching for objects), but it was novel enough to require practice for improvement. Our secondary task was an auditory vigilance task where subjects listened to letter sequences and were asked to identify the number of times a target letter was heard. We tested controls and people with cerebellar damage as they practiced the movement task alone and then performed it with the auditory task. We recorded 3D position data from the arm, trunk, and leg during the movement task. Errors were recorded for both the movement and the letter tasks. Our results show that cerebellar subjects can improve the movement to a very limited extent with practice. Unlike controls, the motor performance of cerebellar subjects deteriorates to prepractice levels when attention is focused away from the movement during dual task trials. Control subjects' insensitivity to dual task interference after practice was due to learned movement automaticity and was not a reflection of better dual task performance generally. Overall, our findings suggest that the cerebellum may be important for shifting movement performance from an attentionally demanding (unpracticed) state to a more automatic (practiced) state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar motor learning: are environment dynamics more important than error size?

Cerebellar damage impairs the control of complex dynamics during reaching movements. It also impairs learning of predictable dynamic perturbations through an error-based process. Prior work suggests that there are distinct neural mechanisms involved in error-based learning that depend on the size of error experienced. This is based, in part, on the observation that people with cerebellar degene...

متن کامل

Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage.

Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of...

متن کامل

Cerebellar Damage Impairs Executive Control and Monitoring of Movement Generation

Executive control of motor responses is a psychological construct of the executive system. Several studies have demonstrated the involvement of the cerebral cortex, basal ganglia, and thalamus in the inhibition of actions and monitoring of performance. The involvement of the cerebellum in cognitive function and its functional interaction with basal ganglia have recently been reported. Based on ...

متن کامل

Cerebellar ataxia impairs modulation of arm stiffness during postural maintenance.

Impedance control enables humans to effectively interact with their environment during postural and movement tasks, adjusting the mechanical behavior of their limbs to account for instability. Previous work has shown that people are able to selectively modulate the end-point stiffness of their arms, adjusting for varying directions of environmental disturbances. Behavioral studies also suggest ...

متن کامل

Walking flexibility after hemispherectomy: split-belt treadmill adaptation and feedback control.

Walking flexibility depends on use of feedback or reactive control to respond to unexpected changes in the environment, and the ability to adapt feedforward or predictive control for sustained alterations. Recent work has demonstrated that cerebellar damage impairs feedforward adaptation, but not feedback control, during human split-belt treadmill walking. In contrast, focal cerebral damage fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 3  شماره 

صفحات  -

تاریخ انتشار 2002